
art news
Kyle J. Knoepfel
art stakeholders meeting
9 February 2017



• New Platforms:
– Ubuntu 16.04 LTS

• Ubuntu 14.04 LTS may be built on request for 2.06.01 and later; will be dropped from art 2.07
– macOS Sierra (Darwin 16), SIP disabled 

• Notable external product changes:
– ROOT 6.08.04c
– GCC 6.3 (e14)

• New features:
– Extended MixFilter abilities for Events and their associated (Sub)Run products
– Relaxed art::Assns<A,B> lookup policy and relaxed art::Ptr<T> resolution rules for 

smart query objects
– Introduction of the art “tool”

• Some breaking changes

art 2.06

2/9/17 Kyle J. Knoepfel | art stakeholders meeting2



• art 2.06.01 supports the e10 qualifier (GCC 4.9.3a); 2.06.00 does not.
• art 2.06.01 fixes a conditional compilation error that could occur during interactive 

ROOT sessions that rely on the utilities in cetlib/container_algorithms.h.

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Release_Notes_20600

art 2.06.00 vs. 2.06.01

2/9/17 Kyle J. Knoepfel | art stakeholders meeting3



Changes with the event loop

2/9/17 Kyle J. Knoepfel | art stakeholders meeting4

• From the top-level main
function, down to event-level 
module overrides, there is quite 
a bit of intervening code.

• To illustrate this, I created an 
analyzer called Sleep that 
sleeps for 1 second per event.

• At the left is the stack trace from 
main to Sleep::analyze.



Changes with the event loop

2/9/17 Kyle J. Knoepfel | art stakeholders meeting5

• From the top-level main
function, down to event-level 
module overrides, there is quite 
a bit of intervening code.

• To illustrate this, I created an 
analyzer called Sleep that 
sleeps for 1 second per event.

• At the left is the stack trace from 
main to Sleep::analyze.

art –c ...

Your analyze override



Changes with the event loop

2/9/17 Kyle J. Knoepfel | art stakeholders meeting6

• From the top-level main
function, down to event-level 
module overrides, there is quite 
a bit of intervening code.

• To illustrate this, I created an 
analyzer called Sleep that 
sleeps for 1 second per event.

• At the left is the stack trace from 
main to Sleep::analyze.



With state machine

2/9/17 Kyle J. Knoepfel | art stakeholders meeting7

• The red-highlighted section is the 
stack trace contribution due to 
using the Boost Statechart library 
to implement art’s state machine.

• In anticipation of complications 
that can arise with multi-
threading, we decided to remove 
the state machine and use a set 
of nested for loops to express 
the allowed transitions.



Without state machine

2/9/17 Kyle J. Knoepfel | art stakeholders meeting8

• The red-highlighted section is the 
stack trace contribution due to 
the nested for loops.

• The code is now:
– easier to understand
– better suited for processing 

concurrent Events, SubRuns, and 
Runs

• Unlikely users would notice any 
difference in processing time.


